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Abstract: The NMR urine analysis of a term newborn with severe general deterioration of the clinical 

state revealed the presence in high concentrations of orotic and argininosuccinic acids. The newborn 

was suspected for an intoxication-like inborn error of metabolism, and the urine samples were followed 

up by NMR spectroscopy for several days in order to assess the metabolic pattern. The identified markers 

led to a definitive biochemical diagnosis of argininosuccinic aciduria.  
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1.Introduction  
Argininosuccinic aciduria (ASA) belongs to the urea cycle disorders that are included in inborn errors 

of metabolism (IEM). The IEM term was introduced by Sir Archibald Garrod in 1908 in the Croonian 

Lectures, when he described for the first time four types of genetically conditioned diseases: albinism, 

alkaptonuria, cystinuria, and pentosuria [1]. He observed that this lifelong duration inherited conditions 

were caused by a decreased activity (or by a complete absence) of a certain enzyme which may stop a 

specific metabolic pathway (in cystinuria a membrane transporter is affected). Garrod also introduced 

the notion of “chemical individuality” [2], but the importance of this ideas was underestimated for many 

years. Today, it is acknowledged that his ideas provided an important background for a pioneering vision 

in system biology. 

Urea cycle is the main route for ammonia detoxification for most terrestrial animals, also known as 

ureolitic species; its defects (urea cycle disorders – UCDs) generally cause hyperammonemia [3]. Out 

of the total of more than 750 IEM currently described, urea cycle defects belong to disorders of 

intermediary metabolism affecting small molecules. ASA is due to the deficiency of argininosuccinate 

lyase (ASL), a cytosolic enzyme that cleaves argininosuccinic acid to produce arginine and fumarate in 

the fourth step of the urea cycle (fig. 1) [3-5].  
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Figure 1. The urea cycle and main associated pathways - image conceived according  

to literature data [3, 6]. For simplicity, not all the substrate and products of each reaction are shown. 

Enzymes I: Located into the mitochondrial matrix: CAVA: Carbonic anhydrase Va; CPS1:  

Carbamoyl phosphate synthetase (the dotted line from carbamoyl phosphate indicates that several 

metabolic steps in the cytosol are required for orotic acid synthsesis.); NAGS: N-acetylglutamate 

synthetase; OTC: Ornithine transcarbamolase. Enzymes II: Located into the citosol: ASS: 

Argininosuccinate synthetase; ASL: Argininosuccinate lyase; ARG1: Arginase 1  

(arginase 2 is extrahepatic, and therefore not shown). Transporters (located into the inner 

mitochondrial membrane): CITRIN (SLC25A13): aspartate/glutamate antiporter; ORC1 (SLC25A15): 

ornithine/citrulline antiporter. 

 

Patients with ASA cannot convert argininosuccinate into arginine, which leads to increased amounts 

of precursors in the pathway detoxifying ammonia. This build-up can lead to increased ammonia levels 

in the blood and other tissues, and may cause brain damage. This deficiency occurs in approximately 1 

in 70,000 newborns [7], and represents the second most frequent defect among the UCDs (after OTC 

deficiency). It presents two forms: a severe type, with neonatal onset (that is clinically indistinguishable 

from other proximal urea cycle disorders) and a late onset form that is less severe [8, 9].  

Our NMR expertise and interest in metabolism in general [10-13] and in IEM in particular [14-16] 

prompted us to attempt an NMR based diagnosis in a neonatal case suspected for a severe genetic 

metabolic disorder.  

 

2.Material and methods 
The urine samples were collected in sterile containers with tight-fitting covers as individual points 

for each excretion moment, and as 24 h mixtures. The urine samples were frozen and stored at -20 °C 

until 1H NMR analysis.  

The NMR spectra were recorded on a Bruker Avance Neo 400 MHz spectrometer, using a 5 mm 

inverse detection multinuclear probe equipped with gradients on the z-axis. The samples were run in 5 

mm Wilmad 507 NMR tubes. Before NMR analysis, the samples were allowed to reach room 

temperature (typically one hour) and centrifuged at 7,000 rpm for 10 min. To 0.9 mL urine, 0.1 mL of a 

stock solution of 5mM sodium 3-(trimethylsilyl)-[2,2,3,3-d4]-1-propionate (TSP) (Aldrich) in 

KH2PO4/KOH/D2O buffer (Aldrich) was added. The pH was not adjusted. The chemical shifts are 

reported as  values (ppm) referenced to TSP as internal standard. The 1H NMR spectra were recorded 

with water presaturation. The pulse sequence used 32 scans, a 90° pulse, 30 s relaxation delay, 3 s CW 

irradiation and 4 s acquisition time as previously described [10-13].  
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Case presentation  

A Romanian child (boy, birth weight: 3230g) born by caesarian section at term (38 weeks of 

gestation), with Apgar score 9/10, was presenting clinical deterioration after the first 3 days of breast 

feeding. The newborn had a progressive deterioration of clinical state, starting with axial hypotonia (first 

identified after about eight hours of protein intake), then lethargy, neurologic signs as unusual 

movements of the limbs/seizures, and hiccups. These were interpreted as signs of progressing 

encephalopathy and, being suspected for a genetic metabolic disorder, the protein intake was replaced, 

the nutritional support being ensured by carbohydrate substrate (Duocal and glucose). Before the 

restricted protein intake, the blood samples were collected for general biochemical investigations, and 

for special metabolic analyses, i.e. blood ammonia, amino acids for thin layer chromatography, and 

several dot blood spots (DBS) for acyl-carnitines analyzed through mass spectrometry. The clinical 

picture was suggestive for an intoxication-type of disorder, like amino acid disturbances, organic 

aciduria or a urea cycle disorder. Several urine samples (collected as individual samples during the first 

days of life) have been sent for NMR spectroscopy analyses. The routine biochemical investigations 

have shown modified serum parameters suggesting severe hepatic disturbances with high transaminases, 

low plasma proteins: 4.2 g/dL, metabolic acidosis with HCO3: 14.5 mmol/L (n.v. 22-26 mmol/L), lactate: 

5.4 mmol/L (n.v. 0.5-2 mmol/L), anion gap: 21.9 mmol/L (n.v. 7-16 mmol/L). The blood urea level was 

close to the inferior limit (4 mg/dl), normal values for newborns in the third day of life being 3.0-34.4 

mg/dL [17]. 

 

3.Results and discussions 
 The relevant regions of the urine 1H NMR spectrum are presented in Figures 2 and 3.  

 

 

 
Figure 2. Region 1.2-3.0 ppm in the 1H NMR spectrum of a urine sample  

with assignments of metabolites 
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Figure 3. Regions 3.0-4.3 and 6.1-6.3 ppm in the 1H NMR  

spectrum of a urine sample with assignments of metabolites 

 

 The concentrations for several metabolites obtained from the NMR spectra are presented in table 

1.  

 

Table 1. NMR derived metabolites concentrations in the urine samples 
Metabolite 

(mmol/mol 

Creatinine) 

Sample 1  Sample 2  Sample 3  Sample 4  Sample 5  Sample  

6 (after protein 

intake restriction) 

References values 

for age <1 month  

(mmol/mol 

Creatinine) 

Orotic acid 

(Oro) 

622.2  

(↑) 

19.0  

(↑) 

8.3  

(↑) 

12.2  

(↑) 

545.5  

(↑) 

366.9  

(↑) 

<3.4  

[6, 18] 

Arginino-

succinic acid 

(Asa) 

2338.1  

(↑) 

3130.0  

(↑) 

3337.0  

(↑) 

5532.9  

(↑) 

4426.2  

(↑) 

4067.6  

(↑) 

<0.5  

[6, 18] 

Lactic acid (Lac) 177.8 100.4 104.2 107.9 1393.9  

(↑) 

381.7  

(↑) 

51-156  

[19] 

Alanine (Ala) 118.5 96.2 100.0 104.8 272.7  

(↑) 

187.7 75-244  

[19] 

2-oxoglutaric 

acid (Oglu) 

4044.4  

(↑) 

158.6 158.3 138.9 431.8 349.5 22-567  

[19] 

Succinic acid 

(Suc) 

222.2 74.5 86.5 70.2 90.9 114.7 35-547  

[19] 

Glycine (Gly) 400.0 713.5 868.8 815.3 1386.4  

(↑) 

1075.4 283-1097 [19] 

Urinary creatinine (Crn) concentrations (mmol/L): 0.52 (Sample 1); 2.13 (Sample 2); 1.73 (Sample 3); 2.40 (Sample 4); 0.58 (Sample 5); 

1.40 (Sample 6). 

 

The first clinical symptoms in urea cycle disorders or organic acidurias presenting hyperammonemia 

are generally poor feeding and lethargy, followed by irritability and other neurological signs; in these 

cases, often the differential diagnosis should include sepsis but, in our case, several specific markers, 

including white blood cells number or C-reactive protein (CRP), were not abnormal. This diagnosis 

(sepsis) is less likely to be taken into account when there are no risk factors. In our case, the first 

laboratory results available were analyses showing a general deterioration of acid-base status and of 

hepatic functions. The urine amino acids analysis by thin layer chromatography (TLC) showed high Asa 

and Asa anhydride levels (the spots are well visible, and do not co-elute with leucine or isoleucine - as 

in liquid chromatography). The concentrations for argininosuccinic acid and orotic acid detected by 

NMR spectroscopy (table 1) are abnormally high, this being a strong indication for diagnosis of 

argininosuccinic aciduria. This diagnostic was supported by results received later for ammonia levels, 

i.e. 641 µmol/L (n.v. 16-60 µmol/L) and for mass spectrometry on dot blood spots that found only 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

 

Rev. Chim., 71 (3), 2020, 210-218                                                      214                                          https://doi.org/10.37358/RC.20.3.7990                                                             
    

 

 

abnormal high levels of citrulline. The concentrations of the other metabolites quantified in the first four 

urine samples by NMR spectroscopy (Lac, Ala, Suc, Gly in table 1) were not reported as being abnormal. 

The first urine sample has a very high concentration of 2-oxoglutaric acid (or α-ketoglutarate - that is a 

key intermediate in Krebs cycle, suggesting a mitochondrial dysfunction). However, we can comment 

that for Sample 5 there is a significant increase in three metabolites, namely Lac, Ala and Gly. Lactic 

acid is increased in the last two sample analyzed and is linked with the secondary involvement of 

mitochondria with the impossibility to maintain the acid-basic status. Although for the first urine samples 

the urine lactate concentrations are still close to the upper limit previously reported as normal range, 

considering the concentrations in the other samples, we can comment that for this particular subject the 

concentrations are abnormally high. In the era of personalized medicine when there are opportunities for 

monitoring many metabolic parameters, one can more accurately define normal ranges for each 

individual organism and can trigger warnings for unusual behaviors even when such behaviors are not, 

or not yet, associated with any pathological condition, assuming that samples are collected on a regularly 

basis.  

Another sign, suggesting abnormal urea cycle reactions was the low blood urea levels i.e. 4 mg/dl, 

normal values for term newborns being between 3.0 and 34.4 [17]. On the other hand, the high levels of 

blood ammonia (10 fold higher than normal values, due to the urea cycle dysfunction) explained the 

clinical picture that was rapidly deteriorating resulting in neurologic involvement. The life-threatening 

metabolic crises have indicated a severe form of an UCD. In all these cases, immediate decrease in 

ammonia level is essential even before knowing the exact molecular defect, and then it is important to 

continue the metabolic investigations to elucidate the underlying defect [5].  

In our case, the results obtained through TLC and 1H NMR spectroscopy indicated the particular 

enzyme deficiency, due to the association of high urinary levels of orotic acid and Asa. As all urinary 

samples collected over 6 days were received in the NMR laboratory in the same time, one can look into 

historical perspective, and it is interesting to note the following: although for all samples collected, both 

Oro and Asa are well above normal values, with Asa having constantly very high values, increased 

urinary concentrations for Asa and Oro did not go perfectly parallel. Asa and Oro in urine were identified 

in very high levels in the first day of life (explained by the defect in UCD and the catabolic state). To 

ensure the positive sample with diagnostic marker (in blood and/or urine), the child was breastfed for a 

limited period of time. Sample 6 was collected after milk restriction (decreasing in this manner the 

protein intake), and the analysis has shown a decreased levels in urinary Asa and Oro. Other important 

increases were observed for lactate, 2-oxoglutaric acid and succinate due to the secondary metabolic 

disturbances linked with metabolic acidosis. Nevertheless, higher excretion of glycine was identified in 

only one sample (before the breastfeeding restriction) being most likely a reversible tubular defect 

similar to iminoglycinuria often identified in newborns. 

According to a simple classification, deficiencies in urea cycle enzymes (located into the 

hepatocytes) include three types of defects [3, 5]: (i) deficiencies of one of urea cycle enzymes located 

within the hepatocyte’s mitochondrial matrix (CPS1, OTC or NAGS), (ii) deficiencies of the urea cycle 

enzymes located into the hepatocyte’s cytosol (ASS, ASL or arginase, respectively), and (iii) defects of 

one of the mitochondrial transporters (ORC1 or Citrin), these being very rare. 

The ASL deficiency presents two types of diseases: a severe one, with neonatal onset, and a late 

onset form. The severe neonatal onset type is indistinguishable from ASS or mitochondrial matrix 

UCDs, and is characterized by hyperammonemia within the first few days after birth accompanied by 

vomiting, lethargy, poor feeding, and hyperammonemic encephalopathy; in the absence of treatment, 

lethargy, seizures, and coma worsen, resulting in death [8, 9]. In contrast, the patients with late onset 

type of disorder may presents different clinical picture, ranging from episodic (intermittent) 

hyperammonemia triggered by acute infection or stress, to cognitive impairment, behavioral 

abnormalities, and/or learning disabilities in the absence of any documented episodes of 

hyperammonemia. Manifestations of ASL deficiency that appear to be unrelated to the severity or 
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duration of hyperammonemic episodes include: (i) neurocognitive deficiencies (attention deficit 

hyperactivity disorder [ADHD], developmental disability, seizures, and learning disability); (ii) liver 

disease (hepatitis, cirrhosis); (iii) trichorrhexis nodosa (coarse brittle hair that breaks easily); and (iv) 

systemic hypertension [3, 7, 20]. 

Regarding the classical laboratory diagnosis in ASL deficiency, elevated plasma ammonia 

concentration (sometimes up to ≥2000-3000 µmol/L), elevated plasma citrulline level (usually 200-300 

µmol/L), and elevated argininosuccinic acid in the plasma or urine establish the diagnosis of ASL 

deficiency; the arginine level in ASA patients is always deficient. High blood citrulline levels is helpful 

to differentiate the extra-mitochondrial from mitochondrial UCDs. The high renal clearance of 

argininosuccinate explains the relative modest elevation of this amino acid in plasma in ASL defect, 

than of citrulline (that more frequent is about 1000-fold increased) in ASS defect [3, 21]. While patients 

with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory 

alkalosis common to other UCD, they also present with unique chronic complications most likely caused 

by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. 

Using 1H NMR spectroscopy method, that are not using laborious pre-analytical steps, the anhydride 

forms are not occurring. Moreover, it was shown that in liquid chromatography, the argininosuccinate 

chromatographic peak might co-elute with leucine or isoleucine, resulting in an apparent increase in one 

of these amino acids [20].  
1H NMR spectroscopy of body fluids has several advantages, and high reproducibility, requiring 

minimal or no sample pre-treatment, avoiding potential destruction of metabolites structure, it is less 

prone to experimental artifacts than chromatography or mass spectrometry, and ensures wide coverage 

of chemical classes. The resulting spectra show the majority of proton-containing compounds, and 

provide an overall view on metabolism, and this holistic view makes NMR spectroscopy a cornerstone 

of metabolomics. In the diagnostics of hereditary metabolic diseases, this is a major advantage compared 

to other techniques [22-24]. 

The limitations in our territory are related to the difficulty to have rapid results for urinary organic 

acids and/or acylcarnitines from DBS corresponding to extended newborn screening. Beside this, in our 

case, the result for blood investigations through mass spectrometry was available later, and has shown 

just “high citrulline levels in plasma”, without pointing the diagnostic. However, high citrulline in 

plasma is found in citrullinaemia type I, citrullinaemia type II, in argininosuccinate lyase deficiency and 

in Pyruvate Carboxylase deficiency type B, but for rapid differential diagnosis are necessary evaluations 

of amino acids and organic acids, including urinary orotic acid and orotidine [25, 26].  

As the literature outlines, even in countries where the expanded tandem mass spectrometry newborn 

screening has been introduced, plasma ammonia should be measured in all newborns and infants with 

unexplained signs and symptoms such as lethargy, poor feeding, irritability and vomiting. Outlining the 

practical aspects, for a reliable determination of blood ammonia, it is important to collect the blood 

without tourniquet, to store and immediate transport the sample on ice toward the lab for a rapid 

ammonia evaluation [5]. Regarding the suspicion for late onset of ASL deficiency, the ammonia should 

be measured (but preferably during a period of clinical deterioration) in all elder children, adolescents 

or in adults with unexplained (sometimes episodic) encephalopathy [5]. In a reported case of less severe 

ASL [9], during newborn screening evaluations, the amino acids elevations were too subtle to provoke 

metabolic referral, and the diagnosis was delayed. 

Molecular genetic testing of ASL (the only gene in which mutation is known to be causative) and 

assay of ASL enzyme activity may be helpful when the biochemical findings are equivocal, i.e. in the 

case published by Ganetsky, that has two known pathogenic mutations – one with no residual activity 

and one with reported 10% residual activity [8, 9].  

Prevention of primary manifestations: Dietary restriction of protein and dietary supplementation 

with arginine are the mainstays in long-term management; for those not responsive to these measures, 

oral nitrogen scavenging therapy can be considered. Orthotopic liver transplantation (OLT) is considered 
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only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional 

medical therapy. Moreover, a large study done on more than 450 patients with UCDs (E-IMD patient 

registry) has shown that non-interventional variables of disease severity, such as age at disease onset and 

peak ammonium level of the initial hyperammonemic crisis (cut-off level: 500 μmol/L) best predicted 

the neurological outcome [8, 18, 27].  

 

4.Conclusions 
The heterogeneity of IEM cases is nowadays well known, and often helped in understanding normal 

function of different organs. Our experience with 1H NMR spectroscopy showed that this approach is 

robust and potentially useful as a screening tool for several IEMs, avoiding thus multiple, time-

consuming biochemical assays which would cause delay in clinical management. Besides, in modern 

societies there is an ever increased pressure to apply the current medical knowledge for personalized 

diagnosis. 

Moreover in countries where economical constrains have delayed the expansion of national 

screenings for rare metabolic diseases, a few IEM specialized NMR laboratories can successfully 

become the main tool for diagnosing or narrowing the hypotheses in suspected cases. Thus, physicians 

should be aware about these rare disorders and about the important advantage of a multi-metabolite rapid 

analysis in cases with clinical suspicion for a genetic metabolic disorder.  

We reported on a severe UCD case, and depicted the successful use of urinary NMR spectroscopy 

for urine analyses, showing high levels of Asa in several urine samples collected from the newborn 

breastfed and after the protein intake restriction. Also, the method was very suitable for quantification 

of orotic acid – as a biomarker easily identified in other cases of UCDs diagnosed by us - OTC 

deficiencies. In this severe ASA case, future implications are linked to the specific treatment of the child 

and genetic counseling for this family. We outline the necessity of expanding the availability of rapid 

metabolic investigations and the national newborn screening in our country. 

Given the reliable and fast results provided by NMR spectroscopy, this is a highly valuable diagnosis 

method for ASA and other IEM; this method has an increased value for differential diagnosis mainly in 

the cases investigated in emergency departments with changes in acid-base homeostasis. NMR based 

metabolomics is not only an effective tool for diagnosing known IEM, but also a very powerful tool for 

discovering new IEM and for supporting hypothesis for biological mechanisms of diseases.  

 

Acknowledgements:Financial support from Romanian National Authority for Scientific Research, 

CNCS-UEFISCDI, project numbers PN-III-ID-PCE-2016-4-0840, PN-III-P4-ID-PCCF-2016-0050 

(5DnanoP) and CI 273/2018 is warmly acknowledged. 

 

References 

1. ROSENBERG, L. E., Legacies of Garrod’s brilliance. One hundred years-and counting, J. Inherit. 

Metab. Dis., 31 (5), 2008, 574-579. 

2. GAHL, W. A., Chemical individuality: Concept and outlook, J. Inherit. Metab. Dis., 31 (5), 2008, 

630-640. 

3. HABERLE, J., RUBIO, V., Disorders of the urea cycle and related enzymes, in Saudubray J.-M., 

Baumgartner M. R., Walter J., (Eds.) Inborn metabolic diseases. Diagnosis and treatment, 6th Ed., 

Springer, Berlin, Heidelberg, 2016, p. 295-308. 

4. SAUDUBRAY, J. M., GARCIA-CAZORLA, A., Pediatr. Clin. North Am., 65 (2), 2018, 179-208. 

5. WIJBURG, F. A., NASSOGNE, M.-C., Disorders of the urea cycle and related enzymes, in Saudubray 

J.-M., van den Berghe, G., Walter J. H., (Eds.) Inborn metabolic diseases. Diagnosis and treatment, 5th 

Edn., Springer, Berlin, Heidelberg, 2012, p. 297-310. 

6. HABERLE, J., BODDAERT, N., BURLINA, A., CHAKRAPANI, A., DIXON, M., HUEMER, M., 

KARALL, D., MARTINELLI, D., CRESPO, P.S., SANTER, R., SERVAIS, A., 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

 

Rev. Chim., 71 (3), 2020, 210-218                                                      217                                          https://doi.org/10.37358/RC.20.3.7990                                                             
    

 

 

VALAYANNOPOULOS, V., LINDNER, M., RUBIO, V., DIONISI-VICI, C., Suggested guide-lines 

for the diagnosis and management of urea cycle disorders, Orphanet J. Rare Dis., 7, 2012, art. 32. 

7. WASIM M., AWAN F. R., KHAN H. N., TAWAB A., IQBAL M., AYESHA H., Aminoacidopathies: 

Prevalence, Etiology, Screening, and Treatment Options, Biochem. Genet. 56, (1-2), 2018, 7-21. 

8. NAGAMANI, S. C. S., EREZ, A., LEE, B., Argininosuccinate lyase deficiency, in Adam M. P., 

Ardinger H. H., Pagon R. A., Wallace S. E., Bean L. J. H., Stephens K., Amemiya A. (Eds.), 

GeneReviews, University of Washington, Seattle, 2011 (updated 2019).  

9. GANETZKY, R.D., BEDOUKIAN, E., DEARDORFF, M.A., FICICIOGLU, C., Argininosuccinic 

Acid Lyase Deficiency Missed by Newborn Screen, JIMD Rep., 34, 2017, 43-47. 

10. CIURTIN, C., NICOLESCU, A., STEFAN, L.-I., KOVACS, E., SMITH, I. C. P., DELEANU, C., 

Metabolic profiling of urine by 1H-NMR spectroscopy. A critical assessment of interpreting metabolite 

concentrations for normal and diabetes groups, Rev. Chim., 52 (1), 2007, 51-55. 

11. STEFAN, L. I., NICOLESCU, A., POPA, S., MOTA, M., KOVACS, E., DELEANU, C., 1H-NMR 

urine metabolic profiling in type 1 diabetes Mellitus, Rev. Roum. Chim., 55 (11-12), 2010, 1033-1037.  

12. NICOLESCU, A., DOLENKO, B., BEZABEH, T., STEFAN, L.-I., CIURTIN, C., KOVACS, E., 

SMITH, I. C. P., SIMIONESCU, B. C., DELEANU, C., Diagnosis of type II diabetes based on non-

glucose regions of 1H NMR spectra of urine: a metabonomic approach, Rev. Chim., 62, (12), 2011, 1150 

13. MUSTEATA, M., NICOLESCU, A., SOLCAN, G., DELEANU, C., The 1H NMR Profile of Healthy 

Dog Cerebrospinal, Fluid, Plos One, 3 (12), 2013, e81192. 

14. MOLEMA, F., GLEICH, F., BURGARD, P., VAN DER PLOEG, A. T., SUMMAR, M. L., 

CHAPMAN, K.A., BARIC, I., LUND, A. M., KOLKER, S., WILLIAMS, M., HORSTER, F., JELSIG, 

A. M., DE LONLAY, P., WIJBURG, F. A., BOSCH, A., FREISINGER, P., POSSET, R., 

AUGOUSTIDES-SAVVOPOULOU, P., AVRAM, P., DELEANU, C., BAUMGARTNER, M. R., 

HABERLE, J., BLASCO-ALONSO, J., BURLINA, A. B., RUBERT, L., GARCIA CAZORLA, A., 

CORTES I SALADELAFONT, E., DIONISI-VICI, C., MARTINELLI, D., DOBBELAERE, D., 

MENTION, K., GRUNEWALD, S., CHAKRAPANI, A., HWU, W.-L., CHIEN, Y.-H., LEE, N.-C., 

KARALL, D., SCHOLL-BURGI, S., LACHMANN, R., DE LAET, C., MATSUMOTO, S., DE 

MEIRLEIR, L., MUHLHAUSEN, C., SCHIFF, M., PENA-QUINTANA, L., DJORDJEVIC, M., 

SARAJLIJA, A., SYKUT-CEGIELSKA, J., WISNIEWSKA, A., LEAO-TELES, E., ALVES, S., 

VARA, R., VIVES-PINERA, I., ORTEGA, D. G., MORRIS, A., ZEMAN, J., HONZIK, T., 

CHABROL, B., ARNAUDO, F., CANO, A., THOMPSON, N., EYSKENS, F., LINDNER, M., 

LUSEBRINK, N., JALAN, A., SOKAL, E., LEGROS, V., NASSOGNE, M. C., Evaluation of dietary 

treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: On the basis of 

information from a European multicenter registry, J. Inherit. Metab. Dis., 42 (6), 2019, 1162-1175. 

15. MOLEMA, F., GLEICH, F., BURGARD, P., VAN DER PLOEG, A. T., SUMMAR, M. L., 

CHAPMAN, K. A., LUND, A. M., RIZOPOULOS, D., KOLKER, S., WILLIAMS, M., HORSTER, F., 

JELSIG, A. M., DE LONLAY, P., WIJBURG, F. A., BOSCH, A., FREISINGER, P., POSSET, R., 

AUGOUSTIDES-SAVVOPOULOU, P., AVRAM, P., DELEANU, C., BAUMGARTNER, M. R., 

HABERLE, J., BLASCO-ALONSO, J., BURLINA, A. B., RUBERT, L., CAZORLA, A. G., 

SALADELAFONT, E. C. I., DIONISI-VICI, C., MARTINELLI, D., DOBBELAERE, D., MENTION, 

K., GRUNEWALD, S., CHAKRAPANI, A., HWU, W. L., CHIEN, Y. H., LEE, N. C., KARALL, D., 

SCHOLL-BURGI, S., DE LAET, C., MATSUMOTO, S., DE MEIRLEIR, L., SCHIFF, M., PENA-

QUINTANA, L., DJORDJEVIC, M., SARAJLIJA, A., SYKUT-CEGIELSKA, J., WISNIEWSKA, A., 

LEAO-TELES, E., ALVES, S., VARA, R., VIVES-PINERA, I., GIL-ORTEGA, D., MORRIS, A., 

ZEMAN, J., HONZIK, T., CHABROL, B., ARNAUDO, F., CANO, A., THOMPSON, N., EYSKENS, 

F., LINDNER, M., LUSEBRINK, N., JALAN, A., SOKAL, E., LEGROS, V., NASSOGNE, M. C., 

BARIC, I., Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased 

plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth 

retardation: Options for treatment, Mol. Genet. Metab., 126 (4), 2019, 397-405. 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

 

Rev. Chim., 71 (3), 2020, 210-218                                                      218                                          https://doi.org/10.37358/RC.20.3.7990                                                             
    

 

 

16. GRAMA, A., BLAGA, L., NICOLESCU, A., DELEANU, C., MILITARU, M., CAINAP, S. S., 

POP, I., TITA, G., SIRBE, C., FUFEZAN, O., VINTAN,  M. A., VULTURAR, R., POP, T. L., Novel 

Mutation in GALT Gene in Galactosemia Patient with group B Streptococcus Meningitis and acute liver 

failure, Medicina, 55 (4), 2019, art. 91, 1-6. 

17. KADER, S., MUTLU, M., BAHAT OZDOGAN, E., ASLAN, Y., EYUPOGLU, I., CANSU, A., 

SARIAYDIN, M., YAZICIOGLU, Y. A., Reference ranges of serum blood urea nitrogen, creatinine 

concentration and ultrasonographic measurement of the kidneys interm healthy newborns in the neonatal 

period, Gynecol. Obstet. Reprod. Med., 23 (3), 2017, 163-168. 

18. HABERLE, J., RUBIO, V., Hyperammonemia and related disorders, in Blau N., Duran M., Gibson K. 

M., Dionisi-Vici C. (Eds.), Physician’s guide to the diagnosis, treatment, and follow-up of inherited 

metabolic disease, 2014, Springer, Berlin, p. 47-62. 

19. HOFFMANN, G. F., FEYH P., Organic Acids Analysis in Blau, N., Duran, M., Blaskovics, M.E., 

Gibson, K. M., (Eds.) Laboratory guide to the laboratory diagnosis of metabolic diseases, 2003, Springer, 

Berlin, p. 28-44. 

20. EREZ, A., NAGAMANI, S. C. S., LEE, B., Argininosuccinate lyase deficiency - Argininosuccinic 

aciduria and beyond, Am. J. Med. Genet. C. Semin. Med. Genet., 157 (1), 2011, 45-53. 

21. PAN, Z., GU, H., TALATY, N., CHEN, H., SHANAIAH, N., HAINLINE, B. E., COOKS, R. G., 

RAFTERY, D., Principal component analysis of urine metabolites detected by NMR and DESI-MS in 

patients with inborn errors of metabolism, Anal. Bioanal. Chem., 387 (2), 2007, 539-549. 

22. ENGELKE, U., GOUDSWAARD, A., WEVERS, R., Proton NMR spectroscopy of body fluids, in 

Blau N., Duran M., Gibson K. M., Dionisi-Vici C. (Eds.), Physician’s guide to the diagnosis, treatment, 

and follow-up of inherited metabolic disease, 2014, Springer, Heidelberg, p. 795-801. 

23. MUSSAP, M., ZAFFANELLO, M., FANOS, V., Metabolomics: a challenge for detecting and 

monitoring inborn errors of metabolism, Ann. Transl. Med., 6 (17), 2018, art. 338. 

24. ENGELKE, U. F. H., OOSTENDORP, M., WEVERS, R. A., NMR Spectroscopy of body fluids as 

a metabolomics approach to inborn errors of metabolism, in Lindon J. C., Nicholson J. K., Holmes E. 

(Eds,), The handbook of metabonomics and metabolomics, 2007, Elsevier, Amsterdam, p. 375-412. 

25. DE MEIRLEIR, L., Pyruvate carboxylase and pyruvate dehydrogenase deficiency, in Blau N., Duran 

M., Gibson K. M., Dionisi-Vici C. (Eds.), Physician’s guide to the diagnosis, treatment, and follow-up 

of inherited metabolic disease, 2014, Springer, Heidelberg, p. 303-310. 

26. SHIH, V. E., Amino acid analysis, in Blau N., Duran M., Blaskovics M. E., Gibson K. M., (Eds.), 

Physician’s guide to the laboratory diagnosis of metabolic diseases, 2003, Springer, Berlin, p. 11-26. 

27. POSSET, R., GARCIA-CAZORLA, A., VALAYANNOPOULOS, V., TELES, E. L., DIONISI-

VICI, C., BRASSIER, A., BURLINA, A. B., BURGARD, P., CORTES-SALADELAFONT, E., 

DOBBELAERE, D., COUCE, M. L., SYKUT-CEGIELSKA, J., HABERLE, J., LUND, A. M., 

CHAKRAPANI, A., SCHIFF, M., WALTER, J. H., ZEMAN, J., VARA, R., KOLKER, S., ARNOUX, 

J. B., BARIC, I., BAUCHART, E., BAUMGARTNER, M. R., BLASCO-ALONSO, J., CARDOSO, M. 

T., CHABROL, B., DJORDJEVIC, M., EYSKENS, F., FREISINGER, P., GLEICH, F., 

GRADOWSKA, W., GRUNEWALD, S., HAEGE, G., HWU, W. L., IOANNOU, H., JALAN, A., 

KARALL, D., LAET, C., LINDNER, M., LONLAY, P., MARTINELLI, D., MEIRLEIR, L., 

MENTION, K., MUHLHAUSEN, C., MURPHY, E., BAULNY, H. O., ORTEZ, C., PENA-

QUINTANA, L., RICHES, V., RODRIGUES, E., SOKAL, E., THOMPSON, N., WIJBURG, F. A., 

WILLIAMS, M., ZIELONKA, M., Age at disease onset and peak ammonium level rather than 

interventional variables predict the neurological outcome in urea cycle disorders, J. Inherit. Metab. Dis., 

39 (5), 2016, p. 661-672; 41 (4), 2018, 743-744. 

 
Manuscript received: 27.01.2020 

 

 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev. Chim.1949 

 

 

Rev. Chim., 71 (3), 2020, 210-218                                                      219                                          https://doi.org/10.37358/RC.20.3.7990                                                             
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev

